63 research outputs found

    Cost-effectiveness analysis for trigeminal neuralgia: Cyberknife vs microvascular decompression

    Get PDF
    Rosanna Tarricone1, Giovanni Aguzzi1, Francesco Musi1, Laura Fariselli2, Andrea Casasco31Economic Evaluation Area, CERGAS Centre for Research on Healthcare Management-Bocconi University, Milan, Italy; 2Radiotherapy Department, Carlo Besta National Neurological Institute, Milan, Italy; 3Centro Diagnostico Italiano, Milan, ItalyBackground/Aims: We present the preliminary results of a cost-effectiveness analysis of cyberknife radiosurgery (CKR) versus microvascular decompression (MVD) for patients with medically unresponsive trigeminal neuralgia.Methods: Direct healthcare costs from hospital’s perspective attributable to CKR and MVD were collected. Pain level caused by trigeminal neuralgia was measured through the Barrow Neurological Institute pain intensity scoring criteria, at admission and after an average of 6 months follow-up.Results: 20 patients for both arms were enrolled, for a total of 40 patients. The two procedures resulted equally effective at 6 month follow-up, with different resources consumption: CKR reducing hospital costs by an average of 34% per patient. The robustness of these results was confirmed in appropriate sensitivity analyses.Conclusion: CKR resulted to be a cost-saving alternative compared with the surgical intervention.Keywords: decision-making, cost-effectiveness analysis, Cyberknife, microvascular decompression, trigeminal neuralgi

    3D culture of multipotent cells derived from waste human ovarian follicular liquid and seeded onto gelatin cryogel

    Get PDF
    Current tissue engineering uses 3D biomaterials in combination with stem cells, since mature cells are often not available in sufficient amounts or quality. Biomaterial scaffolds have been widely used in reconstructive bone surgery not only as cell carriers providing mechanical support, but also as promoters of cell attachment and proliferation (1). In particular, gelatine cryogel scaffolds are promising new biomaterials owing to their biocompatibility and to substain the differentiation of mesenchymal stromal stem cells (MSCs) (2). Human MSC proliferate onto the surfaces with fibroblastic morphology and can differentiate into osteoblasts, chondrocytes and adipocytes (3). These cells can be isolated from several sources, including bone marrow and adipose tissue (4). Our previously studies showed the possibility to obtain MSCs also from the human ovarian follicular liquid (FL) that is usually wasted during in vitro fertilization (5). In this study, we tested the ability of these FL cells to grow and differentiate on gelatine cryogel in comparison with MSCs derived from human bone marrow. Samples and controls were analyzed with confocal and scanning electron microscopes. Results demonstrated that FL cells could grow on the biomaterial not only on the top but also in the layers below till 60mm of deepness. Data suggested that the observed cells are mesenchymal since positive for vimentin and CD44 (a typical MSC marker). Preliminary results showed also the capability of induced FL cells to osteogenic differentiation to produce bone extracellular matrix, expressing some specific proteins (i.e.osteopontin). In conclusion, MSCs derived from waste human ovarian follicular liquid showed promising affinity with 3D gelatine cryogel, opening new potential developments in biotech and medical applications

    Cell-Cycle Inhibition by Helicobacter pylori L-Asparaginase

    Get PDF
    Helicobacter pylori (H. pylori) is a major human pathogen causing chronic gastritis, peptic ulcer, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. One of the mechanisms whereby it induces damage depends on its interference with proliferation of host tissues. We here describe the discovery of a novel bacterial factor able to inhibit the cell-cycle of exposed cells, both of gastric and non-gastric origin. An integrated approach was adopted to isolate and characterise the molecule from the bacterial culture filtrate produced in a protein-free medium: size-exclusion chromatography, non-reducing gel electrophoresis, mass spectrometry, mutant analysis, recombinant protein expression and enzymatic assays. L-asparaginase was identified as the factor responsible for cell-cycle inhibition of fibroblasts and gastric cell lines. Its effect on cell-cycle was confirmed by inhibitors, a knockout strain and the action of recombinant L-asparaginase on cell lines. Interference with cell-cycle in vitro depended on cell genotype and was related to the expression levels of the concurrent enzyme asparagine synthetase. Bacterial subcellular distribution of L-asparaginase was also analysed along with its immunogenicity. H. pylori L-asparaginase is a novel antigen that functions as a cell-cycle inhibitor of fibroblasts and gastric cell lines. We give evidence supporting a role in the pathogenesis of H. pylori-related diseases and discuss its potential diagnostic application

    Ultrastructural features of human sperm cells cryopreserved by different methods

    Get PDF
    Cryopreservation of human spermatozoa has been recognized as a key strategy for management of male fertility. Nevertheless, current protocols of sperm freezing are neither optimal nor standardized between different labs (1). In this study we compare the ultrastructural features of human normospermic sperm samples (according to WHO parameters 2010) from 5 different freezing techniques in order to identify the best methods of cryopreservation. After informed con- sent, 21 normospermic patients (from the Medically Assisted Procreation PMA Center of the Fondazione IRCCS Policlinico San Matteo in Pavia) were recruited and both traditional and improved analysis of sperm quality were applied, in order to define critical steps of cryopreservation. Cryopreservation of human spermatozoa has been related to decreased motility associated with impaired velocity and viability of sperm pre-freeze and post-thaw. For all applied methods there was a significant reduction of progressive and total motility (P) as a result of freezing. To investigate ultrastructural details, 5 additional cryopreserved samples by the best two freezing methods were analyzed with elec- tron microscopy (TEM). Preliminary data showed the minimal differences between the protocols, with a large number of queues detached and large quantities of cyto- plasmic debris after of the first protocol. Spermatozoa appear to be better preserved in the second analyzed method, despite both procedures induced deteriorations at ultrastructural level (2). Other non-routine analysis will be performed to determine whether the cooling time to +4°C may affect the procedure; Comet Assay (to assess the degree of sperm DNA fragmentation) (3) and flow cytometry (to study light scat- ters patterns and membrane integrity) (4) will be applied

    Microscopical immunodetection of cell proliferation antigens

    No full text
    corecore